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AN INVESTIGATION OF HEAT TRANSFER WITHIN REGIONS
OF SEPARATED FLOW AT A MACH NUMBER OF 6.0

By Paul F. Holloway, James R. Sterrett,
and Helen S. Creekmore
Langley Research Center

SUMMARY

An extenslive systematic investigation of the heat transfer associated with
regions of laminar, transitional, and turbulent separation has been conducted
on sharp- and blunt-leading-edge flat plates at a Mach number of 6.0 over a
free-stream unit Reynolds number range of approximately 1 X 10° to 8 x 10° per
foot. Separated regions were forced by forward- and rearward-facing steps, and
by 109, 20°, 30°, and 4LOC wedges located in several longitudinal positions on
the plate.

It has been shown that upon proper classification of the several types of
separated flow, the trends of the heating rates within the regions of separa-
tion may be characterized by typical distributions which are essentially inde-
pendent of the model geometry (except to the extent that the model-geometry
variations affect the location of transition). In particular, the local heating
in the separation region is less than or greater than that on the flat plate
without separation for the case of pure laminar or turbulent separation,
respectively.

Methods are not avallable which can give a complete explanation of the
mechanism of separation and the resulting effects on many of the important aero-
dynamic parameters such as heat transfer. However, it has been shown that care-
ful classification of the type of separation and application of existing methods
of prediction will yleld reasonable predictions of the magnitudes and trends of
many of the important heat-transfer parameters in the separation region and on
the surface of the wedges placed on the flat plate.

INTRODUCTION

Boundary-layer separation is a common phenomenon in aerodynamics that will
occur on any surface where the pressure rise and pressure gradient are suffi-
ciently large. The importance of this phenomenon hag long been recognized and
results of many theoretical and experimental investigations of the problem are
available in the literature. (See, for example, refs. 1 to 13.) The complexity
of the separation flow field has, however, prevented a complete solution to the



problem of prediction of separation effects on the various aerodynamic param-
eters. The importance of the problem has been increased by the current interest
in flares and control surfaces for stabilization and aerodynamic control of
various flight configurations at hypersonic speeds.

The importance of transition on the behavior of parameters within a sepa-
ration region has been recognized (see ref. 3) and has led to the classifica-
tion of regions of separation into three types: (1) pure laminar, (2) transi-
tional, and (3) turbulent. The effects of these types of separation on heat
transfer are not as well documented as those on pressure distributions, partic-
ularly at high supersonic and hypersonic speeds. The experimental laminar heat-
transfer results of references 14 and 15 have agreed very well with Chapman's
prediction of the average heat transfer in a region of laminar separated flow
(ref. 16). However, very little information is available at hypersonic veloc-
ities for the cases of transitional and turbulent separation. More experimental
data are needed for separated boundary layers, particularly for transitional
and turbulent separation to provide a check on the validity and range of appli-
cability of the theoretical methods of prediction available and to act as a
gulde for a more generalized theoretical approach to the problem of predictions
of heat transfer within the separated region.

Much of the previous experimental work on separation has been conducted on
flat plates. Analyses of these results has led to gquestions concerned with the
three-dimensional-flow effects in separation. A discussion of three-dimensional
effects is out of the scope of this paper; however, such a discussion is given
in reference 2. In reference 2, it is pointed out that although more research
on this subject is needed, two-dimensional-flow models often yleld results
which may be utilized to give estimations of flow parameters for other more
practical geometries which are not two dimensional in nature. It is also
pointed out that the detailed physical process of separation is probably three
dimensional even for essentially two-dimensional models. Although flat-plate
studies have their limitations, such studies offer the opportunity to investi-
gate experimentally complex problems under conditions where many variables may
be easily changed.

The purpose of this paper is to present the results of an extensive, sys-
tematic, experimental investigation of the heat transfer in regions of laminar,
transitional, and turbulent separation obtained on an unswept flat plate at a
free-stream Mach number of 6.0 with a ratio of wall temperature to stagnation
temperature of approximately 0.55. The experiments were conducted in two wind
tunnels which together had a free-stream unit Reynolds number range of approxi-
mately 1 X lO6 to 8 x 106 per foot. Model geometries tested were forward- and
rearward-facing steps and 10°, 20°, 30°, and 40° wedges. The tests were con-
ducted on an unswept flat plate with three degrees of leading-edge bluntness
(including a sharp leading edge). Tests were conducted in the Langley 20-inch
Mach 6 tunnel and in the Langley variable-density Mach 6.2 blowdown jet.

Both local and average heat-transfer parameters are presented, and the
effects of classification of the separated regions into laminar, transitional,
and turbulent are discussed. Also, peak heating in the separated regions and
on the wedges is discussed. Finally, the results are compared with several
theoretical and semiempirical methods of predictlon.
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SYMBOLS

coefficients of T' equation (see appendix A)
local skin-friction coefficient

average skin-friction coefficient

specific heat of air at constant pressure
Py - Po
95

pressure coefficient defined on local conditiomns,

specific heat of wall material

local heat-transfer coefficient

step height

vertical height of roughness above plate

correlation function in heating-rate equation due to pressure
gradient (see ref. 24)

Mach number
Prandtl number

local Stanton number (see eq. (4)) based on free-stream conditions

pressure

dynamic pressure

experimental heating rate

stagnation heating rate calculated for a sphere with l-foot radius

(see ref. 22)

X2
integrated experimental heating rate, \/ﬁ q dx
x
1

recovery factor (see eq. (3))

Reynolds number, EEE



Poo o0

free-stream Reynolds number per foot,

free-stream Reynolds number based on distance from leading edge of
Pt Xy

plate to beginning of step or wedge, T

free-stream Reynolds number based on distance from leading edge,
(S S
Hoo

Reynolds number based on conditions at outer edge of boundary layer
upstream of disturbance effects and on distance from leading edge
Polo*a
Ho

of plate to beginning of step or wedge,
lateral spacing of roughness elements (fig. 1(c))
longitudinal surface length of wedges
average diameter (thickness) of leading edge
temperature
reference temperature
velocity component of flow parallel to surface of plate

longitudinal distance along plate measured from leading edge

longitudinal distance from leading edge t0 beginning of disturbance
(step or wedge)

longitudinal surface distance from junction of wedge leading edge and
plate (positive values measured downstream along wedge, negative
values measured upstream of wedge along plate)

angle of attack, positive values indicate compression on instru-
mented surface

leading-edge wedge angle

ratio of specific heats of air
local wall thickness
viscosity

density

time



¢ wedge angle

Subscripts:

d disturbance (wedge or step)

fp flat-plate conditions

J Junction of wedge and plate

lam laminar

max maximum measured value

o] local conditions at outer edge of attached boundary layer or at
outer edge of separation

P plateau conditions for laminar separation, or first peak condition
for turbulent separation

r recovery

8 separation

t stagnation

T based on reference temperature

trans transition

turb turbulent

v virtual origin

w wall (local)

b ¢ distance from leading edge

o free stream

@=0 wedge angle equals zero

1 beginning of separation

2 beginning of step

Primes denote parameters evaluated at reference temperature T'.



APPARATUS AND TEST METHODS

Wind Tunnel

The test program was conducted in the Langley 20-inch Mach 6 tunnel and in
the Langley variable-density Mach 6.2 blowdown jet (referred to in figures as
tunnels 1 and 2, respectively). The langley 20-inch Mach 6 tunnel is the inter-
mittent type exhausting to the atmosphere through a diffuser augmented by an
air ejector. Tests were run with tunnel stagnation pressures of 365, 4#0 and
515 pounds per sguare inch absolute with stagnation temperatures of approxi-
mately 940° R to 1040° R. The models were essentially isothermal at room tem-
perature and had a T&/Tt variation of 0.53 to 0.59. A more detailled descrip-

tion of the tunnel is given in reference 6.

In order to extend the test Reynolds number range below that obtainable in
the 20-inch Mach 6 tunnel, additional tests were conducted in the variable-
density Mach 6.2 blowdown jet. However, tests for a given model configuration
and Reynolds number were not duplicated in the two tunnels. This tunnel is also
of the intermittent type exhausting to a 40,000-cubic-foot sphere which can be
pumped. to pressures as low as 1 millimeter of mercury absolute. Tests were run
with tunnel stagnation pressures of approximately 65, 115, 165, 215, 265, 365,
and 515 pounds per square inch absolute with stagnation temperatures of 840° R
to 1020° R. A more detailed description of the tunnel is given in reference 1T7.

Models

The models consisted of unswept flat plates constructed from stainless
steel. Each plate was 9 inches wide and approximately 11 inches long. Plate
number 1 was a continuous plate with a sharp leading edge (t = 0.0015 inch)
mounted on a support plate as shown in figure 1(a). The remaining models
consisted of plate number 2 with interchangeable leading edges (fig. 1(b)).
ILeading-edge piece A was sharp and t = 0.0015 inch. Leading-edge pieces B
and C were blunt and t = 0.120 inch and t = 0.375 inch, respectively. In
order to trip the boundary layer and obtain turbulent separation data, several
sharp leading edges (t < 0.004 inch) were tested with various slze roughness
located 2 inches from the leading edge. (See ref. 18 for effect of roughness.)
The spheres were glued into small spherical segment indentations in the leading-
edge plece. The locatlion, spacing, height above the plate, and dlameter of the
spheres is given in figure 1(c) along with a sketch of the model assembly con-
sisting of plate number 2, a leading-edge plece, and the support plate.

After completion of the test program in the 20-inch Mach 6 tunnel, the
model assembly, as shown in figure 1(b) (that is, the plate 2 assembly), was

cut down to overall dimensions of 7% inches wide and 10% inches long to be

tested in the smaller variable-density Mach 6.2 blowdown Jet.

The forward-facing steps utilized in these tests had a span of 7 inches
and a chord of 1.15 inches. (See fig. 1(a).) For most of the tests, the step
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height was 0.25 inch. However, a limited quantity of data has been obtained on
steps of height 0.125 inch and 0.40 inch. For the tests on plate 1, the step
locations along the plate were varied and were at distances Xq from the

leading edge of the plate to the leading edge of the step of 2.9%, 6.70, and
9.4l inches. Two longitudinal positions were used for the tests of plate 2
with x5 = 6.69 and 9.58 inches. The rearward-facing step was located at a

distance of x3 = 2.9 inches. The step was built into the sharp-leading-edge
piece as shown in figure 1(d). Two step heights were tested, H = 0.125 and
0.250 inch.

Four wedge angle ramps (109, 20°, 30°, and 40°) were tested with a span
of T inches and a wedge (ramp) surface length of 1.5 inches. (See fig. 1(a).)
The following table gives the distances in inches from the leading edge of the
plate to the leading edge of the wedge for the four wedge angles tested.

Wedge angle, X3, plate 1 X3, plate 2
¢: deg F .
orward Middle Rear Middle
10 2.98 6.71 9.47 6.44
20 3.02 6.77 9.53 6.44
30 3.13 6.88 9.63 6.50
4o 3.31 7.0k 9.78 6.81

Two models of each plate were constructed - one instrumented with
0.050-inch inside-diameter pressure orifices and the other with 30-gage iron-
constantan thermocouples. The instrumentation on plate 1 began at a distance
of 1.35 inches from the leading edge, and on plate 2 at a distance of
%3.25 inches from the leading edge. (See fig. 1(e).) The 0.25- and 0.40-inch
forward-facing steps and the wedges were instrumented similarly. (Instrumenta-
tion was located only on the upper surface of the forward-facing step.) The
0.125-inch forward-facing step was not instrumented. All instrumentation was
located chordwise along the center line of the models. The undersurface of each
plate instrumented with thermocouples was slotted along the center line to a
width of 0.6 inch and had a surface skin thickness of approximately 0.020 inch
on the plates and 0.032 inch on the wedges and steps in order to minimize the
lateral heat conduction in the skin.

The back of the wedges and steps from which the thermocouple leads were
taken was always shielded from the flow.

Test Methods and Techniques

For most tests, the models were positioned at a nominal angle of attack
of 0°. However, some tests were conducted in the 20-inch Mach 6 tunnel with the
model with the forward-facing step at a nominal angle of attack of 8° compres-
sion and this condition resulted in a local free-stream Mach number upstream of
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the disturbance of 4.9 for the sharp-leading-edge models. The accuracy of
angle of attack was il/ho. However, the angle of attack is considered to be
invariant for each group of tests since the mounting was not altered.

The approximate ratio of wall temperature to free-stream temperature out-
side the attached boundary layer for the heat-transfer tests is given in the

following table:

Leading edge a, deg Approximate TW/TO
A 0 k.5
A 8 3.3
B,C 0 1.7 J

The free-stream unit Reynolds numbers tested in the 20-inch Mach 6 tunnel

were approximately 5.6 X 106, 6.9 x 106, and 8.0 x 100 per foot. The free-
stream unit Reynolds numbers tested in the Mach 6.2 blowdown jet were approxi-
mately 7.7 x 106, 5.6 x 106, k.2 x 106, 2.7 x 10°, 2.0 x 106, and 1.2 x 106 per
foot.

Pressure tests.- Pressure distributions along the center line of the plates
were obtained in both tunnels over the test Reynolds number range. In the
20~inch Mach 6 tunnel the local static pressures on the plates were measured by
connecting the orifices to pressure-switching devices which in turn connected
the orifice in sequence to electrical pressure transducers. The electrical
outputs from the transducers were recorded on a digital readout recorder. Each
pressure-switching device was connected to two transducers with ranges of 1 and

5 pounds per square inch absolute.

In the variable-density Mach 6.2 blowdown jet, the orifices were connected
directly to the transducers and the pressure readings were recorded as
described. All pressure tests were run on the same support system as was used
for the heat-transfer tests.

Heat-transfer tests.- The aerodynamic heating was determined by the tran-
sient calorimetry technique by which the rate of heat storage in the model skin
is measured. The models, originally at room temperature or slightly cooler,
were suddenly exposed to the airflow by quick injection from a sheltered posi-
tion beyond the tunnel wall. Injection was accomplished in less than 0.25 sec-
ond and the model remained in the tunnel for approximately 4 seconds. Unpub-
lished results of tests in the Langley 20-inch tunnel on sharp-leading-edge
plates with and without end plates have indicated virtually no effect of end
plates on heat transfer within turbulent separation regions for the type of
models utilized in this investigation. (Note that all instrumentation is loca-
ted on the model center line.) End plates were not used in this investigation
so that schlieren and shadowgraphs of the flow might be obtained.




Optical methods.~ During the pressure and heat-transfer tests in the
20-inch Mach 6 tunnel, shadowgraphs and schlieren photographs were often taken
to ald in determining the extent of the regions of separated flow.

DATA REDUCTION

The electrical outputs from the thermocouples were recorded on a high-
speed digital readout recorder. The reading from each thermocouple was recorded
at 0.025-second interval, converted to a bilnary digital system, and recorded on
magnetic tape. The temperature-time data were fitted to a second-degree curve
by the method of least squares, and the time derivative of temperature was com-
puted on a card-programed computer.

The tunnel stagnation temperature range was approximately 840° R to 1040° R
and the wall temperature of the plate was approximately 550° R. Because of the
short time required for the injection of the model, the plates were considered
to have been subjected to a step function in the applied heat-transfer coeffi-
clent. The thin-skin equation used to calculate the local surface heating rate
was

dr,

q = CyPw Oy d_T— (l)

The measured local heat-transfer coefficient was then calculated by the
relation

S @

in which conduction effects are neglected and where Tr 1s the calculated
recovery temperature defined as

Ty = To<l + Myor Z . l) (3)

vhere T, 1s the measured wall temperature, and My 1s the local Mach number

outside the boundary layer calculated from the measured pressure distribution
(a normal shock-pressure loss for the blunt-leading-edge models and no pressure
loss for the sharp-leading-edge models being assumed). This method was con-
sidered adequate since the measured heat-transfer coefficient is rather insen-
sitive to small errors in My. The recovery temperature T, was calculated by

assuming a recovery factor equal to 0.824 in the laminar region and 0.879 in
the turbulent region. The Stanton number was calculated by the use of the
equation:

S« S
Nst = RN ()



based on free-stream conditions ahead of the model. (Note that both measured
or calculated Stanton numbers are always based on free-stream conditions ahead

of the model.)

The experimental heat-transfer parameters é, h, and Ngt presented in

this report were determined by reading the slope of the temperature-time curve
at a time approximately 0.05 second after the model was in position in the
20~inch tunnel and 0.20 second after the model was in position in the varisble-
density Mach 6.2 blowdown jet. The maximum surface temperature increase on the
plates and steps was generally less than 15° and on the wedges geénerally less
than 25°. The nearly isothermal conditions of the tests kept the lateral con-
duction to a minimum.

RESULTS AND DISCUSSION

It has been shown previously by several investigators (for example,
ref. 3) that a meaningful analysis of the pressures in a separated region on a
flat plate can be obtained for separation forced by many geometric shapes if
the flow is properly classified as laminar, transitional, or turbulent. For
example, the plateau pressure for laminar separation and the first peak pres-
sure for turbulent separation are nearly independent of the geometry of the
disturbance that forces the separation of the boundary layer at supersonic and
hypersonic speeds. (See also ref. 19.) The variation of these laminar- and
turbulent-separation pressure parameters with Mach number as determined by
equations taken from reference 19 are presented in figure 2. The equations of
reference 19 fit a summary of experimental data taken without any or moderate
surface cooling. (Surface cooling, of course, affects the boundary layer, and
experimental data have shown that large surface cooling has an effect on sepa-
ration. See, for example, refs. 2 and 11.) In figure 2, examples of pressure
distributions illustrating typlcal laminar and turbulent separation cases taken
from reference 6 are presented. It has been shown in reference 6 that the first
peak pressure for the case of transitional separation can vary from slightly
above that for pure laminar separation to a value approximately equal to that
for turbulent separation depending upon the position of transition relative to

the separation point.

The heating-rate distribution in separated-flow regions obtained for sev-
eral model geometrlies over a wide range of Reynolds number is presented in the
following sections. By using a classification system for the heat-transfer
data similar to that previously established for pressure results, a meaningful
analysis of the separation-heating-rate results may also be obtained.

Typical Separatlon Heat-Transfer Distributions
Characteristic examples of the heating-rate distributions for the three
types of separation as determined by the location of boundary-layer transition

(ref. 3) are presented in figure 3. The model used to obtaln these data was a
sharp-leading-edge flat plate with a forward-facing step. The faired
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heating-rate distributions for the flat plate without the step are shown for
comparison. The pressure distributions and schlieren photographs of the flow
field are also shown in figure 3. Values of the laminar plateau pressure and
the turbulent peak pressure calculated from the equations of reference 19
(assuming My = 6.0) are indicated on the pressure plots of figures 3(a) to
3(c) to aid in classifying the types of separation.

A comparison of the measured pressure data in figure 3(a) with the calcu-
lated laminar plateau value is sufficient to classify the separation region as
laminar in nature. As mentioned earlier, however, the value of the peak pres-
sure within a separation region is not always sufficient to determine whether
the flow 1n that region is transitional or turbulent. The peak pressure value
measured in figure 3(b) indicates that the separation could be turbulent in
nature. Additional certainty of this turbulent nature was available from the
study of reference 18 which indicated that the flow on this plate (without the
step) with the roughness trip employed and at the same test Reynolds number was
turbulent over the full extent of the instrumented area.

Finally, the separation data shown in figure 3(c) was classified as transi-
tional based on the heating-rate distribution on the plate without the step,
the experimental pressure distribution on the plate with the step, the length
of the separation region indicated by the schlieren photograph, and by the
heating-rate distribution with the step. The pressures in the separated region
first increase to a value similar to that expected for laminar separation and
then increase to much higher values, which are, however, below the expected
peak pressure for turbulent separation. This pressure distribution is charac-
teristic of one type of transitional separation as described in reference 3.

Detailed study of the various experimental data obtained in this inves-
tigation has indicated that one of the more simple ways to detect and classify
separation is to observe the local heating-rate distributions in the separated
region relative to the distribution obtained on the same model under similar
conditions without the geometry which forces the separation. Therefore, for
the remainder of this report, the separated flow is classified as "pure lami-
nar," turbulent, or transitional according to the following definitive condi-
tions based on the separated heating-rate distributions (the reattachment region
being neglected):

(1) Pure-laminar separated flow: The local heating rates in reglons of
laminar separation decrease below those heating rates cobtained under similar
conditions on a plate with attached flow once separation has occurred and
remain less than the equivalent attached case on a smooth plate throughout the
separation region as shown in figure 3(a). This definition 1s supported by the
previous work of Nicoll (ref. 14) and larson (ref. 15) for cavity-type separa-
tion models and by the work of Miller, et al. (ref. 12), for outwardly deflected
control surfaces. Not too much importance should be attached to the absolute
value of the lowest heating rate since theoretically the skin friction drops to
zero at the separation point (see, for example, ref. 20) and the lowest heat-
transfer values obtained are, at least partially, a function of the stability of
the separated flow with time.
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(2) Turbulent separated flow: Upon separation, the local heating rates
increase rapidly above those obtained on the reference plate, peak, and then
decrease slightly with increasing distance from the separation point (that is,
increasing Reynolds number) as shown in figure 3(b). Near the base of the step,
where the pressures increase, the heating rates peak again. (See, for example,
refs. 3 and 21.) The points in the distribution referred to as the first peak
heating rate and the second peak heating rate for turbulent separated flow are
indicated in figure 3(b). This trend of heating-rate distributions for turbu-
lent separation is similar to that already established for pressure distribu-
tions in regions of turbulent separation by Chapman, et al., in reference 3;
that is, the local pressures upon separation increase rapidly to a peak value
without experiencing any small initial pressure rise similar to that obtained
for transitional separation.

(3) Transitional separated flow: It has been established in previous
pressure work (see, for example, ref. 3) that the pressure distribution within
a region of transitional separation is strongly dependent upon the location of
the transition region in relation to the separation and reattachment points.

If the beginning of transition is near reattachment, the resulting separation
pressure distribution will be approximately that expected for laminar separa-
tion. If the transition region is near the separation point, the separation
pressure distribution will be similar to that expected for turbulent separation.
Analysis of the results of reference 3 indicates that if the beginning of tran-
sition is downstream of separation and the end of transition is upstream of
reattachment, the pressures will first increase to a plateau pressure; then
upon transition the pressures increase rapidly (but less quickly than for
turbulent separation) and finally peak as is typical of turbulent separation.

In the same manner, 1f the beginning of transition is downstream of sep-
aration and the end of transition 1s upstream of reattachment, the heat-
transfer distribution within the separation region may be divided into three
gdistinct areas. An example of this type of transitional separation is shown
in figure 3(c). In region 1, the local heating rates follow the trend noted as
characteristic of laminar separation, that 1s, decreasing and remalning below
the attached flow values prior to the occurrence of transition. In region 2,
the heating rates increase rapidly until a peak occurs that signals the approxi-
mate end of transition. (This region is considered to be bounded by the
approximate beginning and ending of transition.) Finally, in region 3, the

. local heating rates follow the trends noted as characteristic of turbulent flow.

When the beginning of fully developed turbulent flow is located sufficiently
far upstream of reattachment, first- and second-peak heating rates will be
obtained as is the case for turbulent separation. These peak values are indi-

cated in figure 3(c).

Other examples of the variation in heating-rate distributions obtainable
for transitional separation as determined by the location of transition rela-
tive to the separation and reattachment points are presented in figures 3(d)
and 3(e). Apparently, in figure 3(d) the end of transition is near the reattach-
ment point and the distribution shown in region 3 of figure 3(c) is not obtained.
In figure 3(e), the beginning of transition is apparently near the separation
point and the trends noted in regions 1 and 3 of figure 3(c) are not obtained.

12



(HOWever, the instrumentation does not extend sufficiently far upstream to rule
out the existence of the trends indicated in region 1 of figure 3(c).) For the
cases of transitional separation similar to those shown in figures 3(d) and
3(e) (that is, when the end of transition is sufficiently far downstream that
the distribution of region 3 does not occur), the highest heating rate is
referred to as the peak heating rate for transitional separation. These peak
heating rates are indicated in figures 3(d) and 3(e).

Heat Transfer Associated With Steps

Forward-facing steps.- In examining the heat transfer in a region of tran-
sitional separation, it must be remembered that many factors are known to
influence the position of transition. Therefore, care must be taken in deter-
mining the position of transition under the various conditions. The data pre-
sented in figures 4 to 8 present additional separated heating-rate distribu-
tions obtalined under many conditions over a wide range of Reynolds numbers; how-
ever, 1if properly classified, the data follow the trends previocusly discussed.
The faired data presented in these figures represent the flat-plate heating-
rate distributions for similar free-stream conditions to those for which the
separation data were obtained. The theoretical laminar heating-rate distribu-
tions obtained by the reference temperature method reviewed in appendix A of
this report are shown in figures 4 to 8 for comparison purposes. Also pre-
sented in the figure for reference is the calculated stagnation heating rate of
a l-foot-radius sphere at the same free-stream conditions as determined by the
method of reference 22. 1In each case, the heating rates in the attached regions
for the configurations with steps agree well with the flat-plate data at the
same Reynolds number prior to separation and agree reasonably well with the
laminar theory prior to transition.

Figure 4 presents the effect of step location on the separation heating-
rate distributions for a sharp-leading-edge (t = 0.0015 inch) model at local
Mach nunbers of 6.0 and 4.9 and at three unit free-stream Reynolds numbers (the
step height is 0.25 inch). 1In figure 4(a), with the model at an angle of attack
of 0° (Mg = 6.0), the separation regions are transitional in nature for the step
in the front and middle position at the three Reynolds numbers of the test. The
trends of distributions (fig. 4(a)) within the regions of separation are the
same as those previously discussed for transitional separation (fig. 3(c)).

With the step in the rear position, it is difficult to classify the flow
because it is borderline between transitional and turbulent conditions. In fig-
ure 4(b) with the model at an angle of attack of 8° (My = 4.9), the separation
regions are transitional for the case of the step forward. (See fig. 3(e).)

The heating-rate distribution for the turbulent separation with the step in

the middle and rearward positions is similar to that discussed in figure 3(b).

In order to obtain additional data on heating~rate variation within regions
of turbulent separation, tests were run with various size boundary-layer trips
located 2 inches from the sharp leading edge of the model with the 0.25-inch
step located in the rearward position. The results of these tests are presented
in figure 5. The trips utilized were the three-dimensional controlled-surface-
roughness (spheres) leading-edge pieces used in the investigation reported in
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reference 18. TFrom figure 5, the forward movement of the "virtual origin" of
turbulent flow (see ref. 18) as caused by the increasing roughness height is
seen to have had virtually no effect on the extent or magnitude of heating of

the separation region.

The separated heating-rate distributions are presented in figure 6 for the
models with varied leading-edge bluntness and with the 0.25-inch step in the
rearward position at 0° and 8° (compression) angle of attack at the maximum
unit free-stream Reynolds number. The separation data for the sharp leading
edge (t = 0.0015 inch) in figures 6(a) and 6(b) are turbulent in nature. For
both angles of attack, the heating-rate distributions follow the trends pre-
sented as typical of turbulent separation. The 8° (compression) angle of attack
yields a higher local unit Reynolds number (an increase of approximately 39 per-
cent) and caused the transition to move forward on the plate.

The effects of blunting the leading edge to a thickness diameter of

0.12 inch (fig. 6) is to reduce the local Reynolds number at the edge of the
boundary layer sufficiently to give laminar flow over the smooth plate at both
angles of attack. The laminar theoretical heating-rate distribution was cal-
culated by assuming a normal-shock pressure loss and that the flow had expanded
back to free-stream pressure. The resulting separation regions obtained for
the model with the l/h-inch forward-facing step are transitional in nature, the
beginning of transition being located significantly far forward of reattach-
ment. Fach heating-rate distribution follows the expected trends for transi-
tional separation.

Further blunting of the leading edge to a thickness diameter of 0.375 inch
apparently caused transition to occur earlier than it did for the thickness of
0.120 inch. In figure 6(a) at an angle of attack of 0°, the flow is laminar
over the full length of the smooth plate. The model with the step yields tran-
sitional separation which agrees well with the expected trends. However, at an
angle of attack of 8° compression, in figure 6(b), transition apparently occurs
early on the smooth plate (with no step), fully developed turbulent flow being
obtained near the trailing edge of the model. The mechanism by which transi-
tion could occur on a model with a t = 0.375 inch leading edge but not occur
on a model with a t = 0.12 inch leading edge at similar test conditions is
not fully understood; further investigation of bluntness effects on natural
transition at hypersonic Mach numbers seems to be warranted. The separated
region shown in figure 6(b) for an angle of attack of 8° and t = 0.375 inch
is also transitional in nature, but the end of transition is near the separa-
tion point so that the heating-rate distribution follows more nearly the trend

expected for turbulent separation.

Figure 7 presents the variation in separation heating rates with the three
degrees of bluntness over the full test Reynolds number range. For all but the
lowest Reynolds number, the separation regions of figure T(a) are transitional
in nature and follow the expected trends. At the lowest free-stream Reynolds
number of 1.2 X lO6 per foot, the separation region for the sharp leading edge
is laminar in nature and the local heating rates remain below the smooth-plate
values as expected. For the 0.12-inch-diameter leading edge, in figure 7(b),
the increased blunting results in transitional separation only at the maximum
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free-stream Reynolds number of approximately 7.8 X 106. Laminar separation
regions were obtained for all other Reynolds numbers. In each case, the dis-
tributions follow the typical trends.

Again in figure 7(c) for the 0.375-inch-diameter leading edge, the
increased blunting results in transitional separation occurring earlier than
it did for the 0.l2-inch-diameter leading edge. Transitional separation regions
were obtained for R, = 7.7 X 106, 5.6 x 106, 4.1 x 100 per foot. Laminar
separation regions were obtained for the lower Reynolds numbers (below

= 4.1 x 106). The heating-rate distributions agree with the typical trends
presented previously.

The effects of step-height variation on the magnitude of the separation
heating rates and on the extent of the separation region for the sharp-leading
edge model are shown in figure 8. In figure 8(a), the data for the 0.125-inch
step might be classified as either laminar or transitional in nature whereas
the data for the 0.25-inch step are definitely transitional in nature. When
the step height was increased from 0.125 inch to 0.25 inch, the resulting peak
separation heating rates for the 0.25-inch step are approximately 5 to 6 times
as large as those for the 0.125-inch step.

With the steps located in the rear position and the model at an angle of
attack of 0° (fig. 8(b)), the steps create regions of transitional separation
which at maximum Reynolds number are very close to turbulent conditions. The
separation regions associated with the 0.40O-inch step are somewhat larger than
those associated with the 0.25-inch step.

With the steps located in the rear position and the model at 8° (compres-
sion) angle of attack, as shown in figure 8(c), the separation regions are all
turbulent in nature. The separation region resulting from 0.40-inch step is
larger than that resulting from the 0.25-inch step, but there is less differ-
ence between the two regions for turbulent separation than was found in fig-
ures 8(a) and 8(b) for transitional separation.

Rearward-facing steps.- Two rearward-facing steps (with heights of
0.125 inch and 0.25 inch located at xg = 2.9 1nches) were tested at free-
stream Reynolds numbers of approximately 1.3 X 106 and 2.8 x 106 per foot. The
heating-rate distributions for the rearward-facing steps are presented in fig-
ure 9. Also presented for comparison are the distributions obtained on a
sharp-leading-edge smooth plate at comparable free-stream conditions and the
theoretical laminar heating~-rate distributlon for a smooth plate. In fig-
ure 9(a) for the 0.125-inch step, the separated regions are laminar for both
Reynolds numbers. The heating rates are initially less than the attached flow
values and gradually recover back to slightly less than the attached-flow values
near the approximate reattachment region as indicated by the schlieren photo-
graphs. For the separated heating rates for the 0.25-inch step in figure 9(b),
the heating rates in the reattachment region exceeded the attached flow wvalues
found on the smooth plate and remain greater than these reference values. It
has been shown in reference 23 that these two types of distribution are to be
expected for models with rearward-facing steps at supersonic Mach numbers with
various Reynolds numbers. The present investigators believe that when the
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maximum heating values near reattachment and downstream of reattachment are
much larger than the values for the smooth plate, transition from laminar to
turbulent flow has occurred or is occurring. As evidence of this effect, there
is also plotted in the figure the turbulent heating-rate distribution found on
the same plate without a step in the same tunnel at approximately the same
Reynolds number with a roughness trip of k = 0.080 inch located 2.0 inches
from the leading edge. (See ref. 18.) Comparison of the 0.25-inch step data
at Ry, = 2.7 X 106 per foot with the turbulent plate data shows rather con-
clusively that transition to turbulent flow has occurred near the reattachment
region for these conditions. An example of rearward-facing steps being used
to promote transition is also given in reference 3.

Transition was not given as an explanation of the difference between the
X
two types of distributions in reference 235. Rather, the value of —a was
HVﬁo,d
represented as the parameter which determines the relation of the heating rates
downstream of reattachment to those at similar conditions on a smooth plate.
Maximum heating-rate values were found in reference 23 to be less than the

X

smooth-plate values when ———é;—-> 0.067 and greater than the smooth-plate
B o0,d
X
values when ———g;—-< 0.067. The values of this parameter for the present
H 0,4
investigation are given in figure 9 where 1t can be seen that values of
X
———§~—<< 0.0197 caused the heating-rate values in the reattachment region to
H 0,d
X
be greater than the smooth-plate values. The parameter ———g—~, therefore,
H\Ro,qd
2

appears to be ineffective in predicting the results of the present investiga-
tion., Analysis of the present results would indicate that any significant
increase in heat transfer downstream of a rearward~facing step would be asso-
ciated with the promotion of transition caused by the step. (See also ref. 3.)

Average heating rates.- Chapman's analysis of the ratio of the average
heating rate in a laminar separation region to the average heating rate for
laminar attached flow (ref. 16) has been shown to give good predictions of the
available experimental results for cavity type of separation models. In par-
ticular, the results of Larson in reference 15 and of Nicoll of reference 1k
give excellent agreement between the experimental results and Chapmen's pre-
diction. Figure 10 presents the ratio of the measured integrated heating rate
in the separated region to the measured integrated heating rate for attached
flow under similar free-~stream conditions. The slight differences in the free-
stream total pressure and temperature have been considered by a correction fac-
tor (ét)fp/«ét)s' The integrated heating rates have been obtained for the

separation region only, the reattachment and the heating on the face of the step
belng negiected. The experimental heating rates are plotted as a function of
the Reynolds number based on conditions at the edge of the boundary layer on
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the smooth plate and the distance from the leading edge of the model to the
beginning of the step. For the blunt-leading-edge plates, the local flow was
assumed to have passed through a normal shock, and resulted in a nominal Mach
number of 3.16.

The solid symbols on the left of figure 10 represent the pure laminar
separation data obtained in this investigation. The solid line represents the
value of the ratio as predicted by the theoretical analysis of Chapman. The
theory 1is seen to predict the experimental data reasonably well. In particular,
the numerical average of the current experimental results agrees very well with
the prediction. (An approximate correction to these experimental values to
account for the pressure rise due to separation would be to divide these values

by Mpw/po as discussed in references 12 and 24k. However, it would make only
a small difference for these particular cases since the value of \E%/Po is

only about 10 percent above unity.) Hence, a theory that was derived for
laminar separation within a cavity, also gives a reasonably good prediction of
the integrated heating ratios for laminar separation forced by a forward-facing
step.

The open symbols shown in the middle of figure 10 represent the transi-
tional separation data. The integrated heating-rate ratios for transitional
separation increase rapldly with increasing Reynolds number from the laminar
value of approximately 0.5 to a peak value on the order of 2 or greater. The
scatter of the transitional data is thought to be at least partially due to the
difference in the transition position caused by the bluntness of the leading
edge and by the presence of the step (as compared to the transition position
for the smooth plate).

The solid symbols on the right of figure 10 represent the turbulent separa-
tion data. Also shown in this figure are theoretical predictions of the inte-
grated heating-rate ratio for turbulent separation based on a rather arbitrary
assumption. This assumption is that the local Stanton number remains constant
streamwise across the separation point. (See appendix B for more details.)
Therefore,

h
<p u C ) - <p ulz > (5)
070"P,%/pefore separation 070 P, 0 Edge of separation region

The values of Po and u, at the edge of the separation region can be esti-

mated from nonviscous equations if the static pressure in the separation region
is known and may be predicted by the equation

= L5, 9.1
Cp,p = 0.13 M02+M03 (6)

which is taken from reference 6 for this Mach number range. Comparison of the
prediction with the experimental data indicates that this simple method of pre-
diction gives a good approximation of the magnitude of the experimental results.
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The maximum values of the transitional separation data in the ratio form
shown in figure 10 are due, at least in part, to the laminar or near-laminar
average heating rates for the smooth flat plate which were used to nondimen-~
silonalize the separation data; that is, the separation forced by the step can
move the transition region forward. Therefore, to gain a better insight into
the true relative magnitudes of the integrated heating rates for the three
types of separation, figure 11 presents the integrated heating rates for sep-
aration in dimensional form as a function of Ro,d'

In figure 1l(a), the separation data obtained with models at an angle of
attack of 0° are presented. Examination of this figure indicates that once
transitional separation occurs, the integrated heatlng rates increase rapidly
with Reynolds mumber and reach a peak for the case of turbulent separation.
For the case of 8° compression angle of attack, the data obtained (fig. 11(b))

were all turbulent in nature.

Local Stanton number distribution for turbulent separation.- It has been
shown in figure 10 that the simple assumption that the local Stanton number
remains constant streamwise across the separation point together with the
assumption that the pressure in the separated region is that given by equa-
tion (6) gives a good prediction of the magnitude of the integrated heating-
rate ratio for turbulent separated flow. In figure 12, this method of predic-
tion is compared with the streamwise local Stanton number dilstribution (based
on experimental data) for turbulent separation.

Figure 12(a) presents the turbulent separation data for an angle of attack
of 0° and for Ry =~ 8 X lO6 per foot. In order to move the beginning of turbu-
lent flow further forward (ref. 18), various height roughness elements were
also placed 2 inches from the leading edge for most of the data shown in this
figure. The theoretical calculations of Stanton number based on attached tur-
bulent flow shown in the figure were obtained by the methods reviewed In refer-
ence 18 and in appendix A of this paper. As was done in reference 18, when the
roughness helght was sufficiently high so that the beginning of translition was
near the roughness position, the theoretical distributions have been calculated
by assuming that the boundary-layer virtual origin 1s located at the roughness
position. In figures 12(b) to 12(d) the Stanton numbers based on experimental
data are compared with the theoretical prediction for the 0.25-inch step and
the 0.40-inch step model at an angle of attack of 8° , for several step loca~
tions, and several free-stream Reynolds numbers with and without roughness.

As would be expected, the prediction of the separated-flow heat-transfer coef-
ficient (egs. (5) and (6)) does not give any approximation of the trends of
the NSt varlation within the separation region. However, the comparison of

the calculations and data shows that this method of prediction gives an approxi-
mation of the magnitudes of local Stanton numbers to be expected within a region
of turbulent separation.

Peak Stanton numbers for transitional and turbulent separation.- Another
parameter of interest is the peak Stanton number which occurs in the region of
separated flow. In figure 13, the peak Stanton numbers in regions of transi-
tional and turbulent separation caused by a forward-facing step are plotted as
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a function of Reynolds number based on local undisturbed conditions and the
distance from the leading edge of the model to the step. The data of fig-

ure 13(a) show that the peak Stanton number for transitional separation
increases rapidly with increasing Reynolds number and reaches a peak value
slightly greater than that for turbulent separation. The peak Stanton numbers
for turbulent separation (second peak heating as defined in fig. 3(b)) decrease
with increasing Reynolds number. In figure lB(b), the first peak Stanton num-
bers for turbulent separation (see fig. 3(b)) show the same decrease in

(NSt)max with increasing Reynolds number found for the second peak Stanton num-

ber in turbulent flow. Also in figure 13(b) the first peak Stanton numbers for
transitional separation with the beginning of fully developed turbulence suf-
ficiently far upstream of the step (see fig. 3(c)) show the same increase of
(NSt)max with increasing Reynolds number.

Larson in reference 15 has shown for supersonlc conditions that although
the varlation of average Stanton number for turbulent attached flow with

Reynolds number follows the expected trend of Ngi « (Ro,x)_l/5: the variation
of average Stanton number for turbulent separated flow with Reynolds number

shows an increased dependence on Reynolds number with Ngg « (Ro,x)—2/5- In

figure 13, lines are presented in the regions for the peak Stanton number in
turbulent separated flow that follow the slope given by the assumption that
Nt peak (RO,X)-E/ 2. Comparison of these slopes with the experimental data
shows that within the reasonable limits of data scatter, the peak Stanton num-

ber for turbulent separation also varies as a function of (Ro,x)—2/5'

It was shown in reference 18 that the assumption of Ngy = Ro,x 8&ave a

reasonably good prediction of the Stanton number variation for attached transi-
tional flow. Therefore, also shown in figure 13 in the region of peak heating
for transitional separation are the lines with the slope obtained by assuming
NSt,peak o (Ro,x) for transitional separation. Comparison of these slopes

with the data shows that within the reasonable limits of data scatter, the peak
Stanton number for transitional separation increases directly with increasing
Reynolds number.

The peak values of Stanton number obtained in transitional and turbulent
separation regions forced by wedges are also shown in figure l3(a). Comparison
of these data indicates that the peak values are smaller for the wedges than
for the step. However, the peak Stanton number does increase with Increasing
wedge angle.

Heat Transfer Associated With Wedge Surfaces
The results presented in figures 14 to 22 represent the heating-rate data
obtained when various angle wedges were mounted on the plate for a significant

Reynolds number range., Also included in the figures are the faired curves
representing data obtained on the flat plate without the wedge under similar
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free-stream conditions. Some typical examples of these data are also plotted
in figure 23 in the form of the varlation of the laminar correlation parameter

NStVRW,X with the longitudinal distance from the leading edge.

In figure 23, for laminar attached flow on the plate, the parameter
NSt\ﬁi;,x has a nearly constant value which is approximately equal to the theo-

retical laminar value shown at the left of the figure. (See ref. 24 for the
calculation method.) Laminar or transitional separation regions occur for the
model geometries shown in figure 23 except for the sharp-leading-edge model
with a 20° wedge at free-stream Reynolds numbers greater than 4 x 106 per foot.
That is, when the flow becomes transitional sufficiently far forward of the

20° wedge (fig. 23(b), R, > 4 X 106 per foot), the boundary layer is able to
turn the 200 wedge angle without separating. The increase in heating rates
forward of the wedge in this case is due to the beginning of transition. An
inspection of the data in figures 1% to 23 shows that when the wedges force
separation, the heating-rate distributions in the separation region ahead of

the wedge are above or below that for the basic plate depending upon the type of
separation (laminar, transitional, or turbulent) in a manner similar to that
indicated earlier for separation forced by steps. A more detailed examination
of the heat-transfer results for various wedge angles is given in the fol-
lowing sectlons.

10° wedge.- In figure lh(a), the heating-rate distributions are presented
for three longitudinal wedge positions and at three free-stream unit Reynolds
numbers. In figures 14(a) and 24(d) due to an oversight in test procedure, the
x position of data where any tailled symbols on the wedge are used could not be
determined. However, either the set of tailed symbols or the tailless symbols
are the correct values. It is believed that the tailless symbols represent the
correct data. The heating-rate distributions of figure 1k(a) do not indicate
that the flow separates when the wedge was located in the rear position for any
of the three Reynolds numbers. When the wedge was located in the middle posi-
tion, there was a small region of laminar separation that caused a decrease in
heating rates compared with those for the smooth plate. The 10° wedge in the
forward position caused a relatively large region of laminar separation in
which the heating-rate distributions follow the trends noted as typical for
laminar separation. Figure 14(b) represents the heating-rate distributions
obtained on the sharp-leading-edge model with the 10° wedge mounted in the
middle position on the plate over a lower Reynolds number range. In fig-
ure 14(b), the wedge forces laminar separation for the two lower Reynolds
numbers.

The heating-rate distributions obtained on two blunt-leading-edge models
with the 10° wedge mounted in the middle position are presented in figure 15.
The effects of blunting the leading edge to 0.12 inch (fig. 15(a)) as compared
with the sharp-leading-edge data of figure 14 is seen to cause a substantial
increase in the extent of the separation region for Ry = 7.6 X 106, 5.5 X 106,
and 4.1 x 106 per foot. The heating-rate distributions for the 0.375-inch-
diameter leading-edge model are shown in figure 15(b). For each Reynolds num-
ber tested, laminar separation is evident with the expected heating-rate trends.
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20° wedge.- In figure 16(a), the heating-rate distributions are presented
for three longitudinal wedge positions and at three free-stream unit Reynolds
numbers. As was found for the 10° wedge, the heat-transfer distributions did
not indicate any appreciable separation when the wedge was located in the rear
position where transitional or turbulent boundary-layer conditions existed for
the flat plate.

Figure 16(b) presents the heating-rate distributions obtained on the sharp-
leading-edge model with the 20° wedge in the middle position over the lower
Reynolds number range. For R, = 4.46 x 100, separation is not clearly evident
from the data. However, it was visually noted from the schlieren screen that
when the junction of the wedge was located very close to the beginning of tran-
sition, the flow sometimes fluctuated between separated and nonseparated con-
ditions. At BRe = 2.87 x 100 and Ry = 1.30 X 106, regions of transitional
and laminar separation, respectively, were obtained.

The heating-rate distributions obtained on two blunt-leading-edge models
with the 200 wedge mounted in the middle position are presented in figure 17.
For all Reynolds numbers, the separation regions are laminar or transitional
and very near laminar conditions, and follow the expected trends. Increasing
the bluntness to 0.375-inch diameter as shown in figure 17(b) results in a
smaller separation region than was obtained on the 0.l2-inch-diameter leading-
edge model at comparable free-stream conditions.

300 wedge.- In figure 18 the heating-rate distributions are similar to
those found on the 20° wedge with the exception of the separation region being
more extensive for the 30° wedge than for the 20° wedge and the transition
region being farther forward for the 30° wedge than for the 20° wedge. In
general, the separation regions obtained with the two blunt-leading-edge models
in figure 19 are transitional and more extensive for the 0.12-inch-diameter
leading-edge model than for the 0.375-inch-diameter leading-edge model.

40° wedge.- The effects of wedge location and free-stream Reynolds number
variation on a sharp-leading-edge model with a 40° wedge are shown in figure 20.
The 40° wedge is seen to cause very extensive separation on the model under
each condition investigated. In each case, the separation region is transi-
tional in nature, and the transitlonal region is further forward than for the
smaller angle wedges under otherwise similar conditions. The effects of
blunting the leading edge on a model with a 40° wedge in the middle position
are shown in figure 21. In each case, the transitional separation extends for-
ward of the instrumentation location.

30° wedge and 40° wedge with roughness.- In an attempt to obtain turbulent
separation forward of the 300 wedge and 40O wedge, the models were run with a
sharp leading edge having roughness heights of 0.080 inch located 2 inches
from the leading edge. For both free-stream Reynolds numbers tested (fig. 22),
the flow did not separate appreciably on the 30° wedge. The 40° wedge, however,
did force separation of a turbulent nature. The heating-rate distributions
within this region of turbulent separation are similar to those presented for
the forward-facing step with the exception that no second peak heating rate was
found for the 40O° wedge as was found for the step. It has been shown that the
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assumption that the Stanton number is constant streamwise across the separa-
tion point for turbulent separation will result in an approximation of the heat
transfer within the turbulent separation region for separation forced by the
forward-facing steps. (See figs. 10 and 12.) Also shown in figure 22 is the
heating-rate level predicted by this assumption as based on the experimental
attached heating-rate level prior to separation. Figure 22 shows reasonably
good agreement between the data obtained by this method of prediction and the
data for the turbulent separation forced by a 40° wedge.

Stanton number distributions on wedges.- Stanton number distributions based
on experimental data along the wedges for the sharp-leading-edge model are

shown in figure 24. Some experimental data on the plate forward of the wedges
are also presented for comparison with the laminar attached-flow theory for the
smooth plate to provide information on the nature of the flow forward of the
wedges. Figure 24 includes theoretical calculations of the turbulent Stanton
number distribution on the wedges computed by the reference-temperature method
by assuming that the boundary-layer virtual origin for the flow over the wedge
began at the junction of the wedge and the plate. (Similar assumptions were
also made in refs. 10 and 11.) For these calculations, the local Mach number
and pressures on the wedge were calculated by assuming nonviscous conditions.
(See appendix B for more details.) A nominal value of stagnation temperature

of 500° F was used in the calculations. Both the experimental and theoretical
Stanton numbers have been based on free-stream flow conditions. An overall
inspection of these figures indicates that when the flow is turbulent (or
nearly turbulent) at the beginning of the wedge and separation does not occur,
this calculation method gives a good prediction of the Stanton numbers on the
wedge. (See, for example, fig. 24(a) with the wedge in the rear position and
Reo = 8.12 X 106 per foot.) As the Reynolds number at the wedge position
decreases in such a way that transitional separation occurs, the experimental
data show that the peak Stanton number on the wedges moves rearward along the
wedge and causes increasing discrepancies between data and the trends and values
predicted by the turbulent calculations. (See, for example, fig. 24(a) with the
wedge 1in the forward position, and Ry = 7.97 X 106.) This trend might be
expected since the flow 1s now separated and reattachment occurs along the wedge
surface, fully developed turbulent flow generally beginning downstream of the
wedge~-plate junction. Although the local Stanton numbers vary considerably
from those predicted by the theory for the lower Reynolds numbers, these cal-
culations continue to give an approximation of the peak Stanton number until
laminar or near-laminar conditions exist at the rear of the wedge.

The 40° wedge always causes separation of the flow and the data of fig-
ure 24(e) show that the Stanton number on the wedge always increases with
increasing distance from the wedge-plate junction. These trends would be
expected from a consideration of the flow mechanism involved; for example, the
very large region of separation caused by the 40° wedge as compared with the
flow field found on the lower wedge angles causes the local pressure on the
wedge surface to increase substantially with increasing distance from the wedge-
plate junction. (See the schlieren photographs of fig. 25.) It should be
stressed here that the surface distance of the wedges 1 1is a constant in
these tests for all wedge angles.
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To galn a better understanding of the physical meaning that can be attrib-
uted to the applicability of the calculations by the method of appendix B to the
experimental data, figure 26 compares the approximate measured peak pressure
ratios obtained on the wedges with the theoretical shock values for the test
Reynolds number range. Analysis of this figure shows that although the peak
pressures are a function of Reynolds number the predictions obtained by assuming
the local flow to be attached and inviscid agree reasonably well with the
experimental peak pressures at the lower wedge angles. As the wedge angle
becomes larger, the values of the peak pressures become increasingly larger
functions of Reynolds number; for example, the measured values for the 40° wedge
vary considerably from the values obtained by assuming attached and inviscid
flow except in a very narrow Reynolds number range. Therefore, the turbulent
heat-transfer calculation method presented here which makes use of pressures
calculated by inviscid eguations loses much of its physical meaning for the
40° wedge angle and for the 30° wedge angle at the lower Reynolds numbers.

The Stanton number distributions on the wedges for the blunted leading-edge
plates are compared with the turbulent theoretical calculations in figure 27.
For calculations of the Stanton number distribution on the wedges mounted on
the blunt-leading-edge plate, the local flow over the plate forward of the
wedges was first assumed to have passed through a normal shock at the leading
edge with a resulting nominal Mach number of 3.16 and then the Stanton number
distributions were calculated by the method of appendix B. An inspection of
the figures shows results similar to those obtained with the sharp-leading-edge
plate; that is, the best agreement of data and theory is obtained when the
flow upstream of the wedge is turbulent or transitional. For laminar con-
ditions upstream of the wedge, the theory gives an approximation of the maxi-
mum Stanton number on the 20° and 30° wedges (see figs. 27(a) and 27(b)), even
though the trend of the distribution is not predicted. When laminar conditions
extend to approximately the end of the wedge (see, for example, fig. 27(c),

R, = 1L.09 X 106), the theory overpredicts the heating on the wedges.

A parameter that is of particular interest is the maximum heat transfer
on the wedges. Figure 28 presents the maximum Stanton number based on experi-
mental data measured on the wedge surface for both sharp- and blunt-leading-
edge models as a function of free-stream Reynolds number based on the distance
from the leading edge of the model to the beginning of the wedge. Transition
has occurred before the end of the wedge for most of the data in this figure.
The exceptions are the 10° wedge data at the low Reynolds numbers which are
made solid to indicate that they represent laminar or very near laminar condi-
tions. The peak Stanton number increases with increasing Reynolds number until
the flow becomes sufficiently transitional that the peak Stanton number
decreases with increasing Reynolds number. In general, for wedge angles greater
than 10°, the flow along the wedge has become sufficiently transitional at the
lowest Reynolds number that the peak Stanton number decreases with increasing
Reynolds number., The prediction of the maximum Stanton numbers on wedges is
difficult; however, in the following discussion it will be shown that if the
proper classifications of the flow are made, reasonable estimations of the
values and trends can be obtained.
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The results of reference 12 have shown that the method of Bertram and
Feller in reference 24 gives a good prediction of the heating rates on wedges
for pure laminar flow at high Mach numbers (of the order of 14). This method
was originally derived in reference 24 by using the hypersonic similarity
theory to predict the heat transfer on plates at angle of attack. The maximum
Stanton number on wedges calculated by this method for laminar flow using the

equation
Py
Nst = Ngt, g=0 K5\/p—-———-w i (7)
3 3

are shown in figure 28. In this equation, K3 1is a function of the pressure
gradient over the wedge; however, for the calculations shown in figure 28, K3

b
was taken as unity. The pressure ratio ir—g—- was taken as the theoretical
W, 9=0
inviscid two-dimensional value. The results of a comparison of these calcula-
tions with the 10° wedge experimental data in figure 28 for laminar conditions
show that the theory gives a reasonably fair prediction of the data for both
the sharp- and blunt-leading-edge models.

Because of the agreement obtained between this method and the data in fig-
ure 28, equation (7) is also used in figures 24(d) and 27(c) to calculate the
local Stanton number on the wedges for several cases where the flow is still
laminar at the rear of the wedge. Two values of Kz were used, 1.0 and 1.k,

the latter being the approximate value obtalned from the experimental pressure
data. (However, it should be mentioned that the experimental pressure distribu-
tions obtained were not suffilicient to obtain a very exact value of this param-
eter because of the small number of orifices and the inaccuracy of the pressure
measurement at the lowest pressure.) The measured pressures were also used in

Dy

equation (7) to evaluate the parameter A reasonably good prediction

P
W, ¢=O .

of the local Stanton numbers on the wedge is obtained by these calculations,
but the agreement 1s not as satisfactory as that obtained in reference 12.

Also shown in figures 24(d) and 27(c) is the theoretical laminar Stanton
number distribution for R = 1.1 X 106 per foot obtained by assuming that the

boundary layer begins at the leading edge of the wedge and that the local Mach
number is that value obtained by taking the local flow through a 10° turning
angle. This method of prediction greatly overpredicts the experimental results
for the blunt-leading-edge plate and does not give nearly as good prediction as
those obtained from equation (7).

Since the flow was transitional or turbulent at the beginning of the
wedge for most of the 20° wedge data presented, the approximate peak Stanton
number distribution for a 20° wedge obtained by converting the turbulent
flat-plate theory for ¢ = o° (as obtained by the method reviewed in appen-
dix A of this paper) to a value for @ = 20° 1is shown in figure 28. It was
assumed that the local Stanton number remains constant across the Jjunction of
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the plate and the wedge. (Calculations were similar to those of equation (5)
and appendix B.) This method underpredicts the experimental results
considerably.

As was mentioned earlier, the calculations of Stanton number distribution
on the wedge surfaces for turbulent flow, the virtual origin assumed to begin
at the wedge-plate junction, in general gave a good approximation of the peak
Stanton number on the wedge although the trends of the prediction of the local
distributions did not agree with those of the data. The maximum Stanton number
on the wedges in the region where the thermocouples are located as predicted by
this method are shown as a crosshatched region in figure 29. In figure 29(&),
this method is seen to give a good approximation of the maximum Stanton number
based on experimental data for the 10°, 20°, and 30° wedges for the sharp
leading edge. For the 40° wedge the theory slightly underpredicts the experi-
mental results. For the blunt-leading-edge results of figure 29(b), the theory
best predicts the data for the 20° wedge. For the 10° wedge, the theory over-
predicts the maximum Stanton number primarily because of the laminar or near
laminar conditions of the local flow field on the wedge. For the 30° wedge,
the theory slightly underpredicts the experimental results, although the theory
does give a good representation of the trend of the data with increasing
Reynolds number.

Calculation of Stanton numbers on wedges from experimental data.- The
Stanton numbers on the wedges based on experimental data which have been pre-
sented in this report were determined by assuming a Mach number which was cal-
culated from experimental pressure data and an assumed total pressure of that
for the flat plate undisturbed by the wedge. This assumption results in an
assumed local Mach number of the flow of slightly greater magnitude than the
actual flow conditions. Another technique would be to obtain the total pres-
sure conditions by assuming that the flow along the wedge is inviscid, the
resulting local Mach number being determined by this total pressure and the
experimental local pressure data. The results of figure 29 are replotted in
figure 30 under this assumption. Neither of the techniques used in figures 29
or 30 1s strictly correct particularly for the case of separated flow. However,
the two techniques should give the upper and lower bounds of the Stanton num-
bers based on experimental data. The data of figure 30 show the best agreement
with theoretical predictions. However, comparison of figures 29 and 30 shows
that there is little difference (less than 10 percent) in the values of the
Ngt calculated by the two techniques.

CONCLUSIONS

An extensive experimental investigation of heat transfer within regions
of separated flow forced by forward- and rearward-facing steps and by 10°, 20°,
309, and 40° wedges on sharp- and blunt-leading-edge flat-plate models over a
unit free-stream Reynolds number range of approximately 1 X 106 to 8 x lO6 per
foot and at a free-stream Mach number of 6 with a wall-stagnation temperature
ratio of approximately 0.55 has yielded the following conclusions:
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1. The trends of heating rates within regions of laminar, transitional,
and turbulent separation may be characterized by typical distributions, gener-
ally independent of model geometry, except to the extent that the model-geometry
varlations affect the location of transition. That is, for the case of pure
laminar or turbulent separation, the local heating rate in the separated region
is, respectively, less than or greater than that for a flat plate without
separation. For transitional separation, the local heating rates decrease
below the flat-plate values until transition occurs and then increase rapidly
to values above those of the flat plate.

2. The ratio of the integrated heating rate in a separated region forced
by a forward-facing step to the integrated heating rate in the same region with
attached flow can vary from approximately 0.5 for laminar separation to 2 or
greater for transitional or turbulent separation.

3. Although incomplete knowledge of the separation mechanism has prevented
the development of theoretical heat-transfer calculations based on firm rational
conditions, a meaningful analysis of the data can be made if the flow 1is first
classified as pure laminar, transitional, or turbulent. Trends and values of
many of the heat-transfer parameters can then be made by using existing heat-
transfer calculations based on the reference-temperature method. The inte-
grated heating-rate ratio for laminar separation is well predicted by Chapman's
theory. The magnitude of the integrated heating-rate ratio for turbulent sepa-
ration is predicted by the assumption that the local Stanton number remains
constant streamwise across the separation region when the local velocity and
density outside the separated region were obtained from previous turbulent sep-
aration equations. The assumptions of constant local Stanton number across the
separation point and of pressures within the separation region equivalent to
those predicted by previous turbulent separation studies also give fair pre-
dictions of the values of the local. Stanton numbers in regions of turbulent
separation forced by forward-facing steps. However, the theory underpredicts
the maximum local values very near the step where the pressures are high.

4k, The experimental data show a large variation of the local heating values
and the location of the maximum heating rates on the surface of wedges at vari-
ous angles depending upon the position of transition. The assumption that the
virtual origin of the boundary layer is located at the Junction of the wedge
and the plate gives a very good approximation of the local Stanton number dis-
tribution on a wedge for turbulent conditions without separation when the pres-
sure on the wedge is taken as the theoretical inviscid two-dimensional value.
For transitional flow nearing laminar conditions with separation upstream of
the wedge, this assumption gives a good approximation of the maximum heating
rate even though the location of this maximum heating rate on the wedge is not
predicted. For laminar conditions, a previous equation derived from the hyper-
sonic similarity theory for plates at angles of attack predicts reasonably well
the heat transfer on wedges.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 22, 1965.
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APPENDIX A

REVIEW OF HEAT-TRANSFER EQUATIONS FOR FLAT PLATE

There are many methods available for the theoretical calculation of the
Stanton number on a flat plate. In this analysis, the T' method of Monaghan
(refs. 25 and 26) has been employed. From reference 27 the T' equation may
be written as

T! = AT, + To(l - A+ Ay I = M02> (A1)

The Stanton number may be determined from the modified Reynolds analogy

C
1 VT
N == — (A2)
st,T! )
? (NP-_[.)E/3
where the Prandtl number Np, 1s based on T' conditions.
Laminar Boundary layer
For the case of a laminar boundary layer, the coefficients of equa-
tion (Al) (see ref. 25) become
Ay =1 - o.u68(NPr)l/5
(A3)
1i/2
Ap = (1 - Ay - 0.273Npy) (Npy) /
By using the Blasius equatlon for laminar flow, equation (A2) becomes
0.332\C"
Ngy = s32\CT (Ak)

Fo = (%er) 2/

where Ngy 1is based on free-stream conditions for direct comparison with data

and the conversion parameter from T' reference conditions to free-stream con-
ditions C' is given by

t T
P ok Zo
o' = (45)
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APPENDIX A

Turbulent Boundary lLayer

For the case of a turbulent boundary layer, the coefficients of equa-
tion (Al) (see ref. 28) become

A 0.54

(A6)

Ap = 0.142

The Karman-Schoenherr equations were used to determine the local. skin-friction
coefficlent as follows. (See ref. 29 for a plot of these parameters and further

discussion.)

0.242
F,T!
where
p Xy
Rx,m' = g (A8)
C 1
LT = (49)

CF,T' 1 + 3.59\CF, "
and Cf,Ty may be converted to free-stream conditions as follows:

Ce
Cp = 21" (A10)

T'/To

and finally the Stanton number is determined by modifying equation (A2), by
basing Ngi on free-stream conditions so that

1 Al
T P o

where Cp 1is determined by equation (A10). The distance x,; of equation (A8)
is defined as the distance from the virtual origin. In this paper, the virtual
origin for the flat plate with undisturbed flow was defined as the point at
which laminar flow ends as determined by the surface heat-transfer rates. (See
ref. 29 and ref. 18, for further discussion.) For the flat plate with rough-
ness, the virtual origin was assumed to be located at the roughness position.
(See ref. 18.)
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APPENDIX B

CALCULATION AND CONVERSION OF STANTON NUMBERS BASED ON
LOCAL, TURBULENT CONDITIONS TO FREE-STREAM CONDITIONS
This appendix gives an example of the method used for the calculation and
conversion of Stanton numbers based on local turbulent conditions to free-
stream conditions for wedges and for separation forced by steps.
Turbulent Stanton Number Distribution on Wedges

Consider a flat-plate-——wedge model combination with regions of flow as
indicated below

-)I &\4—

In order to calculate the turbulent Stanton number distribution on wedges the
boundary-layer "virtual origin" is assumed to be located at the wedge-plate
junction. The local Reynolds number based on the distance from the virtual
origin in region 3 can be written in terms of the known conditions in region 2
as

LU X P 1
oy = B2 - RO,2<_5 > _%>xv (B1)

where Ro,2 is the unit Reynolds number per foot at the outer edge of the
undisturbed boundary layer in region 2. (The subscripts 2 and 3 denote
regions 2 and 3 indicated on sketch.)

If 7 4is assumed to be 1.4 and the Sutherland viscosity equation is used,
equation (Bl) can be rewritten in the form

2

R = R —— | —— ]
©V = *70,2 p) Ma\T5 | T, + 198.6

where T is given in °R. Finally, by combining equation (B2) with the equa-
tions presented in appendix A for a turbulent boundary layer, Stanton number can
be determined at any xy position based on conditions in region 3 (shock equa-

tions or tables being used to solve equation (B2)). (See, for example, ref. 30.)
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The Stanton number calculations based on conditions in region 3 can then be
converted to free-stream conditions for direct comparison with experimental
data as follows:

_ h
(NSt)region 3 p5u50p (B3)
therefore,
pzu
Ney = —B 23 (Bl4)
St, pju5CP P U,

if it 1s assumed that the specific heat is constant in all regions. Equa-
tion (B4) may be rewritten in terms of pressure, temperature, and Mach number

as

1/2
Pz (T, M3z
Nst,e = (NSt)region 3 53(5;) M, (B5)

For the case of a blunt-leading-edge plate, the Mach number and Reynolds
number in region 2 were determined by assuming that all local flow had passed
through a normal shock and that the static pressure in region 2 was constant
and equal to the free-stream pressure.

Stanton Number in Regions of Separation

For the prediction of Stanton numbers in a separated region forward of a
step or wedge, equation (B5) was also used. However, the wedge angle @ was
replaced by the separation angle of the flow as predicted by equation (6) in
order to determine the conditions in region 3. Equation (B2) was not used
under these conditions. Rather, it was assumed that the local Stanton number
remained constant across reglons 2 and 3 (see eq. (5)). Therefore, the local
Stanton number was calculated for region 2 at the separation point by the
methods reviewed in appendix A. The local distribution of Stanton number within
the separation region is then found by the normal dependence of Ngy oOn

Reynolds number where the local Reynolds number is assumed to be that along a
wedge whose angle is equal to the separation angle.
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Figure 27.- Comparison of experimental Stanton number distributions on wedges with theoretical predictions for blunt-leading-edge models.
Plate 2; tunnel 2. Solid and open symbols indicate Stanton number based on laminar and turbulent recovery factors, respectively.
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Figure 27.- Continued.
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